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Wave problems were solved in [1-3] with a model of a multicomponent inviscid medium, 
and in [4-7] with a constant bulk viscosity q. 

We solve here the problem of the propagation of a plane one-dimensional wave generated 
by impact loading and by a continuously increasing load in a multicomponent medium with 
n = 0 (inviscid medium), n = ~o (constant viscosity), and n = n(e) (viscosity varying with 
the deformation of the medium). A comparison of the solutions obtained permits a determina- 
tion of the effect of a change in n on the laws of wave propagation. 

Wave processes in liquids containing gas bubbles, and in water-saturated soil (a medium 
consisting of solid particles, liquid, and gas) where the gas is entrapped in the form of in- 
dividual bubbles, are treated by using a model of a multicomponent medium with bulk viscosity 
[6]. The behavior of the medium is described by the equation 

(p) p -  = (p, v ) ,  (1) 

where p is the pressure in the medium, V and Vo are the specific volumes at pressure p and 
atmospheric pressure po, ~) = (dVJdp)/Vo, and VD(p)is the dynamic compression diagram of 

the medium as p-+ao, V-+oo. The function ~p, V) = 0 corresponds to the static compres- 
sion diagram of the medium (equilibrium diagram) as p-+0, V-+0, and n is the bulk vis- 

cosity. 

In this case 
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where i is tlhe number of the component: the first is gas, the second liquid, and the third 
solid particles; ~i is the volume content of the i-th component; Vio = i/Pio is the specific 
volume, and cio is the speed of sound in the i-th component at p = po. In a liquid-gas me- 
dium us = O. 

It is assumed in the model that in the free state all the components are compressed ac- 
cording to t]he equation 

P--P"--  ?i \"~ ] " 

This equation corresponds to a Poisson ~diabat for the gas and Tait's equation for water 
and the material of the solid component. It is assumed that the liquid and solid components 
of the median are compressed instantaneously during loading according to this same equation, 
and the gas gradually as the volume of the bubbles is filled by the remaining components. In 
this case 

P--Po ~i [~-~i ] --lj--~ Vxo. 
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As q + 0 and q § ~ Eq. (i) goes over into the compressibility equations of an invis- 
cid medium, with the compression diagrams coinciding with the static and dynamic compression 
diagrams of a viscous medium. 

The value of ~ is found experimentally. An approximate value of n can be found by mak- 
ing certain assumptions about the character of the deformation of the gas bubbles. All the 
bubbles are assumed spherical and of the same radius. 

When the pressure PB within a bubble is instantaneously balanced, the rate of change of 
its volume V B is 

~= _4nr2uB ' VBo=4nr~/3 ' Vl VB 3UB{ r ~2, 
vl---; = = - " - C  J 

where  u B i s  t he  r a t e  of  d i s p l a c e m e n t  o f  t he  s u r f a c e  o f  t he  b u b b l e  toward  the  c e n t e r ,  ro i s  
i t s  i n i t i a l  r a d i u s ,  and r i s  t h e  runn ing  r a d i u s .  

In  a c c o r d  w i t h  Eqs.  ( 1 ) - ( 3 ) ,  a t  each  i n s t a n t  

) 3 V~ ..3~uB [r  t' "V = X ~ ' - - 3  V, VO~ . . . .  3~lUB( r ~ ]_X~i._~/O ro \ % ]  . . ~ ( p ) ~ ,  
V~ ~=* Vi~ r~ \ r~ i=~ (5) 

, (p, v)"o ( % '1' 
U B ~ 3~1 \-7"] " 

The pressure within a bubble varies according to a Poisson adiabat. Hence 

v~ \-n 
P B=Po~'-~I ] =Poax V ~ i=~ 

(P - PB) ro 
UB= 3n ( 4 ) "  

= p -, (p, v), 
(6) 

The initial escape velocity UBo = (p -- pB)ro/3n can be calculated by using the theory 
of random collapse, as in the plane one-dimensional case. A rarefaction wave is propagated 
in the medium surrounding the bubbles where the pressure is p; a shock wave is propagated in 
air where the pressure po < p. Flow in a rarefaction wave is described by the Riemann solu- 
tion of the fundamental equations of motion. In this case 

UBo= 4- y - -  V - - ~  dp + c o n s t .  

V(p) is the compressibility law of the medium. The constant is determined from the con- 

ditions at the rarefaction wave front. 

In air the pressure is the same as at the wave front where the relations 

UBo = / ~  - -  po)(V - -  ~%) 
are satisfied at the jump. V(p) is the Hugoniot adiabat. 

The values of PB and uBo are determined from the matching condition for the rarefaction 
and shock waves. 

By linearizing the Hugoniot adiabat and the compressibility equation of the medium sur- 

rounding the bubbles we find 

P--PB PB = AlP +A~po (7) 
UB~ == A2 ' Po P0 (A1 + A2)" 

For a liquid--air medium A, = P,oCxo, and A2 = p2oc,o. The value of PB is close to Po. For 
example, when p/po = 100 for a water-air medium, PB = 1.02 po, which also justifies the line- 
arization of the Hugoniot adiabat. The compressibility of the liquid is close to linear. 
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From (61) and (7) we find the initial value of the viscosity 

~o = A21~/3. 

For a three-component medium the acoustic resistance A is determined by taking account of 
the contents of the liquid and solid components and their compressibilities. 

During the compression of the medium the bubble radius can become smaller than the ra- 
dius r* corresponding to the equality of the external pressure p and the internal pressure 
PB. Equilibrium is reached after some oscillations. The amplitude of the pressure oscilla- 
tions due to pulsations of the bubbles is one or two orders of magnitude smaller than the 
wave amplitude [8, 9]. We therefore neglect the effect of pulsations and assume that there 
is a monotonic decrease of the radius from ro to r*, and of the difference p -- PB and the 
velocity u B :From maximum values to zero. We assume that the relation between p -- PB and u B 
remains approximately linear p -- PB = A2UB" Then in accord with (6) we find 

= ( A ~ 1 3 ) ( ~ l r ) <  (8) 

The viscosity at first increase#, and after the equilibrium state is reached it decreases 
to the initial value. 

Experiments on the propagation of compression waves in glycerin containing gas bubbles 
[8, 9] confirm the applicability of this model. 

We compare the solutions for zero, finite (constant), and variable q. 

We use Lagrangian variables x and t. The fundamental equations of motion of a continu- 
ous medium are 

Ou O V  Ou 1 Op O .  
ax Po-~F = O, ~ -  + t% az 

This system is closed by Eq. (i). 
We consider two types of loading: 

impact 

/ P - - P o + p ~ e x p ( - - t / O )  for t > O ,  

[p=po for t~<o; 

A wave is generated by loading in the cross section x = 0. 

(9) 

continuously varying 

P -~ Po + P m  sin (nt/O) for 0 ~ t ~ O, 
(lO) 

P----Po for t ~ 7 . 0 a n d t > O .  

The boundary condition at the wave front where the viscosity has no effect is 

P - -  Po = Po uD, (P - -  p0)D --=- pu. 

The s y s t e m  o f  e q u a t i o n s  i s  h y p e r b o l i c .  The c h a r a c t e r i s t i c  r e l a t i o n s  h a v e  t h e  f o r m  

dp • (--Vo~(p))-~/* da=O ( p ,  V)dt for ~ (--Vo/~(p)) ~/2 = x, 

dp~(Vo~p(p))-~dV ~- ~D(p, V)dt for 0 ---- x, 
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where ~ ,  V ) =  = i ~ ,  V)~(p, V)~(p). 

The solution was obtained by computer, using the method of characteristics for a water- 
air medium with an air content ~i = 0.01 and 0.i. The following values were used in the cal- 
culations: Plo = 1.29, P2o = 103 kg/m 3, czo = 330, C2o = 1500 m/sec, 71 = 1.4, Y2 = 7. The 
dimensionless variables x ~ = x/ro, t ~ = tc20/ro, pO = p/po, V ~ = V/Vo, O ~ = 8C2o/ro. 

Let us consider the results of calculating the parameters of a wave generated by impact 
loading in the form (9) for pO = 50, 0 ~ = 1400, and ~i = 0.01. Figure 1 shows the time de- 
pendence of the pressure in cross sections of the medium where x ~ is equal to 0, i00, 350, 
550, and 800 (curves 0-4 respectively; curve 5 is the pressure in the precursor). From now 
on, dashed curves are for the pressure in a medium with variable n, dash-dot curves for a 
constant n = no, and solid curves for an inviscid medium. 

In viscous media near the initial cross section the wave includes a jump beyond which 
there is a decrease of pressure, and after this a new gradual increase to a second maximum 
and a new decrease. The presence of two maxima can be observed already at a distance x ~ = 
i00 (curve i). At large distances beyond the jump there is a continuous increase in pres- 
sure, and a decrease -- the wave has one maximum. At still larger distances the jump disap- 
pears, and the pressure increases and decreases continuously. The magnitude of the pressure 
at the jump is the same for constant and variable n. However, the maximum pressure for a 
variable ~ is smaller, and the rate of damping of the wave is increased. Taking account of 
a variable ~ leads also to an increase in the time between the arrival of the beginning of 
the disturbance (jump) and its maximum, i.e., to a faster smearing of the wave. 

In an inviscid medium the wave is a shock wave at all distances. The maximum pressure 
is higher than in viscous media. The pressure differences in the three cases being compared 
are of the order of 0.i p. 

Figure 2 shows compression and unloading p(V) curves in various cross sections of the 
medium during the passage of a wave. Curves 0-2 refer to distances x ~ = 0, 100, and 800 re- 

spectively; VD~ ~ and VS~ ~ are the dynamic and static compression diagrams of the me- 
dium. For an inviscid medium the state jumps down from the initial point on the Vs~ ~ dia- 
gram, and as the pressure is decreased it returns along this same curve to the initial point. 
In viscous media with constant and variable n, the state drops from the initial point on the 
VD~ ~ diagram, which corresponds to the jump on the precursor. Then it proceeds on the 
static diagram and further beyond it. When the jump disappears the state proceeds directly 
on the static diagram. As the pressure decreases, the state approaches the initial point, 
remaining beyond the Vs~ ~ curve. There is only a small difference between the p(V) curves 
for constant and variable ~. Taking the radius of a bubble ro = 0.i cm and 0 ~ = 1400, the 
dimensional time of action of the load in the initial cross section is O = 0.93 x 10 -3 see. 
Thus, for a loading lasting ~10 -3 sec and a maximum pressure p = 50 x l0 s N/m 2 the state of 
the mediumproceeds on the static diagram. 

Figure 3 shows the time dependence of the pressure during the passage of a wave in the 
cross sections where x ~ = O, 50, i00, 200, and 350 (curves 0-4 respectively) under impact 
loading (9) with pO = 50 and O ~ = 1400, but with a larger air content (~i = 0.I) than in the 
preceding case (curve 5 is the pressure in the precursor). The differences between the maxi- 
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mum pressures for constant, vari~le, and zero n here also do not exceed 15-25%. The great- 
est d~ping of the m~imum pressure with distance is observed for variable n, and the small- 
est for an inviscid medi~. An increase in the air content leads to an ~crease in the wave 
d~ping, as was noted earlier [i, 6]. 

Let us consider the propagation of a wave generated by the continuously varying load 
described by (i0) (half-period of a sinusoid) for pO = 50 and e ~ = 1400. The air content in 
water al = 0.01. The results of the calculation are sho~ in Fig. 4. Curves 0-4 dete~ine 
p(t) in cross sections of the medi~ where x ~ = 0, i00, 350, 550, and 800 respect~ely dur- 
ing the passage of a wave. As before, the solid curves refer to an inviscid medium, the 
dash-dot curves to a constant n, and the dashed cu~es to a variable ~. 

A wave having a jump at the front is generated in an inviscid medium near the initial 
cross section; to start with, the magnitude of the jump is ~finitesimal. Behind the jump 
the pressure increases continuously to a maxim~. As the wave propagates, the magnitude of 
the jump at the front is increased, and the magnitude of the following continuous pressure 
increase is diminished. At a certain distance the wave is transfo~ed into a pure shock 
wave with the pressure maximum at the jump and lower behind it. With further propagation 
the maximum pressure decreases, and the duration of the wave increases. The transformation 
of a continuous wave into a pure shock ends rather quickly. During the transfo~ation the 
maximum pressure decreases by less t~n 10%. 

Neglecting viscosity, the compressibility diagram of water containing gas bubbles cor- 
responds to Vs~ ~ in Fig. 2, and the compressibility diagram of pure water coincides with 
VD~176 In both media these curves are convex to the origin of coordinates, and therefore 
continuous waves are transfo~ed into shocks. However, the curvature of the V(p) diagram 
for water containing bubbles is significantly greater than that for pure water, and there- 
fore effects connected with cu~r appear more strongly~ 

In viscous media (cf. Fig. 4) smearing of the continuous wave is obse~ed, and the t~e 
between the arrival of the beginning of the disturbance and its maximum increases as the wave 
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propagates. Simultaneously with the smearing in certain parts (x ~ = 100-350), the profile 
of p(t) becomes steeper (in the region of increasing pressure), and the wave gradually ap- 
proaches a shock. At large distances the inverse process begins -- the slope decreases (x ~ = 
550-800) and the profile becomes less steep. The smearing of the wave and the increase in 
slope of the profile occur for constant and variable n. 

The smearing of the wave is related to the viscous properties of the medium, and the in- 
crease in slope to the nonlinearity of the static compression diagram. When this diagram is 
linear, there is no increase in slope of the profile [7]. The smearing of a continuous wave 
generated by sinusoidal loading in glycerin containing air bubbles, and a simultaneous in- 
crease of the slope of the profile in a certain part, were found experimentally in [8, 9]. 

The differences of the maximum pressures in a wave generated by a continuously varying 
load with and without taking account of viscosity reach 50%, and for constant and variable 
n 20%. The p(V) curves for constant and variable n obtained in various cross sections of 
the medium during the passage of a wave are negligibly different, as in the case of impact 
loading (of. Fig. 2). 

Thus, taking account of bulk viscosity in the model of a medium leads to a change in 
the character of the wave-smearing of the profile, the creation of two maxima, the delay of 
the development of deformations relative to the pressure, and a change in the rate of damp- 
ing with distance. The wave profile may become steeper in certain parts. 

The introduction of a variable instead of a constant viscosity does not change the gen- 
eral character of the wave, but leads to an increase in the rate of damping and the smearing 
of the wave with distance. An increase in pressure from 105 to 50 x 105 N/m ~ is accompanied 
by a decrease in the equilibrium radius of a bubble by a factor of 2.53, the volume of the 
gaseous component by 16.33, and the viscosity n by 6.44. For this change in n the rate of 
damping and the smearing of the wave increase by only 10-20%. This shows that approximate 
values of the bulk viscosity can be used in solving wave problems in the cases considered. 
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